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ABSTRACT

P

Using a simple martingale representation result a conditional version of the Malli-
avin calculus is developed. Under Hormander’s conditions on the coefficient vector fields

2-we-shew the filtering, smoothing and prediction problems have C® density solutions. - —

- -~

( . s
“i SR -2 SU("/'SC((P(L. vor

1. INTRODUCTION. Following Malliavin’s remarkable work [6] there have been&
other treatments of the Malliavin calculus, including those of Bismut [1], Stroock [8]
and Norris [7]. A particularly readable account can be found in the paper of Zakai [9].
In [2] Bismut and Michel developed a conditional version of the Malliavin calculus to
show the existence of a conditional density in filtering and smoothing problems. Using
a simple and natural expression for the integrand in a stochastic integral the authors [4] -

have been able to give an elementary proof of the existence of a density for a diffusion,

'Research partially supported by the Air Force OMce of Scientific Research, United States Air Force, under
grant AFOSR-86-0332 and European Office of Aerospace Research and Development, London, England
2Research partially supported by NSERC Grant A 7964
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under Hormander’s conditions for the coefficient vector fields. The homogeneous chaos
expansion of the random variable is also obtained in [4]. The objective of this paper
is to present a conditional version of the results of [4] and, following the exposition of
Zakai, simplify some of the results of Bismut and Michel.

In this paper the following system of stochastic differential equations is considered:
dz = Xo(z,y)dt + Xi(z,y)dw* + X;(z,v)dB’ + X;(z,y)h? (z,y)dt.
dy = Yo(y)dt + Yj(y)dB’ + Y;(y)k’ (z,y)dt.

Here w = (w!, ..., w") and B = (B!, ..., B") are independent Brownian

motions. The process z represents the unobserved signal process, while y represents the
observation process. If {Y:} is the right continuous, complete filtration

generated by {y¢} then the filtering problem discusses E[z;|Y;], the prediction problem
discusses E[z¢|Y,] when s < t, and the smoothing problem discusses E[z¢|Y,] when
s>t.

Using the simple martingale representation result of [4] a conditional version of
the Malliavin calculus is developed in section 4. Suppose T >t and let ¢ be any smooth
function on R¢ with bounded derivatives of all orders. In section 5 we show that if the
inverse of the conditional Malliavin matrix M belongs to L?(f1) for all p,1 < p < oo,

then
B[ (z0I¥2]1 < K(s) sup Ie(a)]
az® - z€Rd
for all multi-indices a = (a1, ..., az) where K(y) is a Yr-measurable random variable

which is finite a.s. The delicate and technical sufficient conditions for the integrability

of M™? are not discussed in this paper.




This inequality, using simple Fourier analysis, implies that the random variable
z; has almost surely a conditional density given Yr, which is infinitely differentiable.

Using Jensen’s inequality we can immediately deduce
B[ 2 (%] < K'(5) sup (=)
oz - zERY

where s > t or s <t. Therefore, the smoothing, filtering and prediction problems for

z¢, given Y,, have, almost surely, smooth conditional density solutions.




2. STOCHASTIC FLOWS

We recall in f.his section the properties of stochastic flows, and in particular those
relating to ‘lower triangular’ systems obtained by Norris [7]. Let wy = (w}, ..., w}),
t > 0, be an n-dimensional Brownian motion on (01, F, P). Write {F;} for the right
continuous, complete filtration generated by w. Suppose Xp, Xi, ..., Xm are smooth
vector fields on [0,00] X R4, all of who;e derivatives are bounded. Then from Bismut

[1), or Carverhill and Elworthy [3], we quote the following result:

THEOREM 2.1. There is a map £ : 01 x [0,00) x [0,00) x R® — R? such that
i) for 0< s <t and z € R? §¢,4(z) is the essentially unique solution of the stochastic

differential equation

dést (T) = Xo(t, & ())dt + Xi(t, &0t (z))dw} (2.1)

Witb eg" (I) =.
(Note the Einstein summation convention is used).
i) for each w,s,t the map &4(-) is C® on R® with a first derivative, the Jacobian,

Qa%-‘_ = D, s, which satisfies

9Xo

dD.,t = 8—6

( €ut (5))Dag e + S, €44 () Dug s (22

with initial condition D,, = I, the d x d identity matrix.

REMARKS 2.2. Note that (2.2) is obtained formally by differentiating (2.1). In fact

n
equations for higher derivaties g;s are obtained by further differentiation. However,

if we consider the enlarged system given by (2.1) and (2.2) the coefficients are not




bounded, because of the linear appearance of D,s on the right of (2.2). However,
Norris (7] has extended the results of Theorem 2.1 to such systems. To state Norris'

results we first define a class of ‘lower triangular’ coefficients.

DEFINITION 2.3. For positive integers a,d,dy, ..., d; write Sy(dy, ..., di) for the set

of X € C*°(R4%, R%) of the form

xM (21) zl
x@ ¢ l, 2 2

X(z) = (=) for z = z (2.3)
. z.k

X® (1, 22, k)

where R® is identified with R% x ---x R%, zJ € R% and the X satisfy

= | . ( )' x ()
X = .—_sz Vv D:
" "S("'»N) :up s”u<p” (1 I lzla) l:"lp:k l b (z)l)

< oo for all positive integers N. (2.4)

Write S(dl, ceey dk) = USa(dl, ceey dk).
a

REMARKS 2.4. Note equations (2.1) and (2.2) can be considered as a single system
whose coefficients are not bounded, but are in S(d,d?). The final supremum on the right
of (2.4) implies the first derivatives of X(1) are bounded, as are the first derivatives D;
in the ‘new’ variable z7 of XU) (z!, ..., z/). This means X0) is allowed linear growth
in 27, a situation illustrated in (2.2). We quote from Norris the following extension of

Theorem 2.1.

THEOREM 2.5. Let Xo, Xy, ..., Xm € Sa(d1, ..., dr). Then there is a map ¢ : Q1 x

[0,00) x [0,00) x R® — R% such that




i) for 0 < s <t and z € R* ¢(w,s,t,z) is the essentially uniques solution of the

stochastic differential equation
dz; = Xo(z¢)dt + Xi(z¢)dw} (2.5)

with z, = z.
ii) for each w, s,t the map ¢(w, 8,t,z) is C*® in z with derivatives of all orders satisfying

stochastic differential equations obtained from (2.5) by formal differentiation.

iii)

sup E[‘sup |DN¢(W,3:“’$)|”]

lo|<R  ‘le<u<t

S C(p, 8’taRsN1dla csey dkaa’ "XOIIS(Q,IV) y ocey “Xn”S(a,N) )' (2‘6)

REMARKS 2.6. Norris proves Theorem 2.5 by induction on j. Write (2.5) as a system

of stochastic differential equations for y =1, ...,k

dri = X (al, ..., d)dt + XP (z}, ..., =f)dv]

z =2 € RY%. (2.7)

Suppose the result is true for 1 = 1,...,5 — 1 and write )?'(j)(w,s,t,z")

= X-gj) (z}(w), ..., 2} "} (w),27). Then (2.7) can be written in the form
dz-" = fo(s, L, .‘L'i)dt + i"(s,t’z{)dwg

and Theorem 2.1 applied. The difficult step is establishing the result for

J = 1. However, this follows by a stopping time argument, which is essentially the




method by Bismut [1]. Using the notation of Theorem 2.1 consider the process V

defined by

Was = = Var (5 600 2)) - 2(‘”" (6 s (2)) o

aX;

- V,'g 3¢ (t f,.g (z))dw,, (2'8)

with V,, = I. Then by applying the Ito rule we see d(D,;V,) =0, while D,,V,, =1,
the d x d identity matrix. Therefore, V ¢ = D,‘}. By applying Theorem 2.5(iii) to
the system given by equations (2.1), (2.2) and (2.8) we have |D;,| = .;1:% | D, | and
[Vt | = ‘21:2 [Vau| are in L?(f) for all p < oo. Finally, for 0 < s < t, recall, by the

uniqueness of the solution of (2.1):

€0 (z0) = €t (€00 (20)) = &t (2), if T = 0,6 (20)- (2.9)
Differentiating (2.9):
D,t = D,z Do, (2-10)

and

Vor = Vo, Vet (2.11)
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3. MARTINGALE REPRESENTATION.
Consider a stochastic differential system with coefficients in some set S, as dis-

X cussed in Theorem 2.5, and let o (z,0) be its stochastic flow solution. For some T > 0

~ e

consider a real valued differentiable function ¢ for which the random variable c(éor (z0))

- -

. and the components of the gradient c¢(€or (z0)) are integrable. Let M; be the right
;’ continuous version of the martingale

. Ele(éor (%o))|F].

|

X

! Then we have the following representation result, (see [4]), whose proof we give for
4 completeness.

THEOREM 3.1. For0<t<T, Mr = Ele(éox (z0))] + fot vi(8)dw’ where

" () = Efc¢(éor (z0)) Do |Fu] Dyt Xi(s, £o,s (20)).

!

A

: PROOF. It is well known that M, has a representation

: _—

: M, = M, +/ vi(s)dw} (3.1)
K 0

g for some predictable integrands 4;. Because the process o (zo) is Markov
M

; M; = E[c(éo (o)) | Ft]

1

: = Ele(éer (2))|Fi] (3.2
)
Z = Etfe(éer ()]

»

' = V(t,z), say, where z = €0t (zo0)-
: 8

'
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By Theorem 2.5 and the chain rule ¢({.,r (z)) is differentiable, in fact smooth, in z.
The differentiability of E¢,(c(é:x (z))] in t can be established by writing the backward
equation for & r(z), as in Kunita [5]. Consequently, applying the Ito role to V(t,z),

with z = £ (o) we have

t
V(t, €o.t (z0)) = V (0, z0) +=/0 (%—‘:— + LV)ds

v ' B (0,0 (20)) Xils, €0 (z0)) s (33)

d d m .
i 8 1 i y7)__82 .
where L = X3 + X3 X 3z.95:" By the uniqueness of the decompo-
ig 09z, 7;4‘?;:1 (k§l $X) Ti0Z;
sition of special semimartingales, comparing (3.1) and (3.3), we must have, (as is well
known),
1%

— +LV =0
83+

and %(s) = §¥ (s, 0, (20)) Xi (8, €04 (z0))- From (3.2) 3% = Ele¢(éur (2)) D |F] 50

by (2.10) v(s) = Ele¢(éo,r (o)) Do;r |F,] D5 s Xi(s, €o,5 (o))

COROLLARY 3.2. The result extends immediately to vector (or matrix) functions ¢

COROLLARY 3.3. Note in particular

T
¢(éox (o)) = Elc(éor (zo))] + /o E[e¢(€ox (20)) Dor [Fal D5y Xi(s, €o,5 (zo))dw (3.4)

LEMMA 3.4. F; is generated by the set of stochastic integrals of the form f(: (8, w,)dw?,
where the integrands <; are smooth functions of s and w, at time s, with bounded

derivatives of all orders.

‘o
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PROOF. o{w;} is generated by g(w¢) for g € C§° (R%). If we apply Theorem 3.1 to the

process wy, s0 wy = = + (w¢ — w,) where z = w,, the Jacobian is the identity I and
E(gw(wt)|Fs] = Eoz[gu(wt)] = v(ws)

where y(w,) = (71 (w,), ... Ym(ws)) = Esw, [(9w! (Ws), - .., gum (w;))]. Therefore, g(we) =
E[g(we)] + fot i (w,)dw} where the v; € C{°(R?). Consequently o(wt) is generated by
stochastic integrals of this form. Allowing the integrands to depend on s we that F;,

which is generated by w,, for s <t, is generated by stochastic integrals of the form

t .
/ vi(s, wa)dwl
0

where v; € C3° ([0, 0) x R™).

REMARKS 3.5. So far we have considered an n-dimensional Brownian motion w =
(wl, ..., w™) and a state vector z € R%. Consider now a larger system: suppose

= (B!, ..., B") is an n-dimensional Brownian motion, defined on a probability space
(ﬁ, f’, ﬁ), which is independent of w. Write {ﬁ} for the right continuous, complete
filtration generated by B, and {G¢} for the right continuous, complete filtration on

ax0 generated by F; x }7} Consider a second state vector y € RP and a stochastic

differential system defined on (1 x , FxF, Px ﬁ) by the equations

dz¢ = Xo(ze,ye)dt + Xi(ze, ye)dw} + X;(z¢,y¢)dB]

dye = Yo(ye)dt + Y;(y:)dB] (3.5)

with (z(0),y(0)) = (zo,y0) € R® x RP. We shall suppose the coefficient vector fields

Xoy .-y Xm, Yo, ..., Y, are such that the coefficients of (3.5) belong to the space S,

10




so that Theorem 2.5 can be applied. Note that in (3.5) the process y is not influenced

by the process z.

NOTATION 3.6. Suppose (z,y) € R? x RP is the state of the system (3.5) at time s.

We shall denote the solution flow of (3.5) for t > s by the map

(Iv y) - (I.,t (I, y)»yc,f (y))

The Jacobian of this map looks like
O(zos (2,9)) 8(zs¢ (2,y))
Ozt (2,9), sz (v)) _ 3z 3y
9(z,y) 0 Byae (3)

dy

(3.6)

Write D, (z,y) for the ‘partial’ Jacobian Q-(ﬂ‘é-(zi’—ﬁ)- The existence of the large Ja-
cobian, and, therefore, of its components, including D,;, is given by Theorem 2.5.
As in (2], we now introduce a new measure on (01 x 0, F x F) by a Girsanov

change of density.

NOTATION 3.7. Suppose h(z,y) = (h!(z,y),..., h"(z,y)) is a smooth function in
C®(R*? ,R") with bounded derivatives of all orders. Define the real valued process

L on 1 x 1 x[0,00)2 x R x RP by

¢
Lug(z,) = exp{ [ W (2 (2,9), 900 (1)) 5]

- %z":/t hj(z,',, (2,9); You (y))2du}'

j=1"¢
Then

ALyt (2,y) = Lag (z,y) (W (2ot (2, 9), Yo (2, v))dB] (3.7)

11
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with L,,(z,y) =1, so L is a {G;} martingale. Furthermore, Ly, = sup Loy is in every
. u<t
space L?(Q1), 1 < p < co. Because h is bounded we also have that (Lg;)* =sup(Lgy)
u<t
is in every L?(1), 1 < p < oo. We could consider the flow given by the combinded

system (3.5) and (3.7). However, for the moment note that for 0 < s <t

Lot (zo,%0) = Lo,s (%0, %0) Lat (z,) (3.8)

so writing L = Lo, (zo,y0) we have

0Los

aL - Lyt(z,v)
and
aLO,t _ aLO,a aLa,t
dzo = dzo La,t ($,y)+Lo,, dz DO,G (3-9)
with a similar equation for %l;%‘—.

DEFINITION 3.8. Define a measure P, on (0 x {1, F x F) such that its restriction to
G: is given by

dPy(w,@) = Lo (z0,¥0)dP(w) x dP(&).

Then Girsanov‘s theorem states:

THEOREM 3.9. Under P, the process B' is an n-dimensional Brownian motion inde-

pendent of w, where

t
Bz = Bg —/ h(zo,‘ 2 Y0,2 )ds.
0

. . : CLORD P & JOB
B I O RO OO




it Therefore, under the measure P, the process (z,t,yst) is the solution of the stochastic

differential equation

it dz,p =Xo(Zut,Vsg)dt + Xi(ZTag,vag )dw} + XJ’ (Zae s st )dB:j
Y + i.1 (zl.‘ 1Yt )h’J (z‘;t s Yo t )dt

RN dYes =Yo(Yse)dt + Yj(ss )ABE + Yi(yet )W (Zas,vsz )t (3.10)

with (Zs4,¥s4) = (z,y) € R® x RP.

e REMARKS 3.10. The system (3.9) provides a natural setting in which to discuss fil-
@ tering, smoothing or prediction problems. The process z; represents a signal which is
not observed directly. Instead one observes the process y; which is influenced by z;
: 20 through the process h(z;,y:). Write {¥;} for the right continuous, complete filtration

:;'-‘:' generated by y, and Ej for expectation under P,. The filtering problem discusses
:::a: Ex[z:|Yz),

O the smoothing problem discusses

2% Ej|z¢|Yr], where t <T,

e and the prediction problem discusses

oY Ep[z¢|YT], where t > T.

e In this paper, using the techniques of the Malliavin calculus , we show in the filtering,
Af'!'; smoothing and prediction cases, that the conditional distribution of z; has a smooth
o) density.
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4. INTEGRATION BY PARTS

Suppose 0 <t < T and let Uyt (&) be an Fr measurable random variable of the

form discussed in Lemma 3.4, that is
T -
Uor (@) = / +i(s, B,)dB] (4.1)
0

where v; € C§°([0,00) x R® for 1 < j < n. Consider the system given by (3.5), (3.7)

and (4.1) on (ﬂxﬁ,Fxf,Pxﬁ):

Az, = Xo(ZegYat)dt + Xi(Zag s Yas )dw} + X;(80s ez )dB]
dyst = Yo(yez)dt + Yj(yer )dB] (4.2)
dLa,t = La,t h (za,t Vs t )dB{

dU,; = ~(t, B;)dB]

Then Theorem 2.5,with (z,,,¥s.4,Les,Uss) = (2,¥,1,0), can be applied to (4.2) and

we can consider the associated stochastic flow. Note U,; does not involve z,y, or L,

and if Uy, = U then

t
Uog = U + / ~i(s, B,)dBI. (4.3)
8

Also, if L = Lo, , from (3.8)

Los = LLuy(s,v). (4.4)

THEOREM 4.1. Suppose 0 <t < T and let ¢ be a C® function on R® with bounded

" derivatives of all orders. Then for any square integrable predictable process u(s) =




L)
\
RNt OO RN

(u1(8),-..,um(8))

T .
ElUozr Loz c(zos (zo,w0)) /0 wi(8)duws]

i t
= Z E[Uox Lo,r c5(%oz (o, 0)) Doyt /0 D, Xi(s)ui(s)ds]

i=1

m a T
+ 3 ElUoz Loz Lk elzos (z0,10) 25 [ D3 Xile)ui(e)as]

n r
- ZE[UO,T Lot ¢(zoy (zo,yo))/; Lo, %‘-Do—'} X:(s)ui(s)ds]. (4.5)
=1

PROOF. First recall the derivation of Theorem 3.1 and write for 0 < 8<t<T

V(s,z,y,L,U) = E[Uox Lo (0, ¥o)¢(Zot (0, ¥0))|G,]
= E[(U + U, )LLs1 (2,y) (24t (,9)) |G (4.6)

= E‘.’ML'U I(U + Ua,T)LLa,T (za y)c(zc.l (s! y))]

The martingale representation result is obtained by writing down the Ito formula for V,
and the derivatives of V are found by differentiating the conditional expectation (4.5)

in z,y,L and U. Note that for s > t the derivative of ¢(z,¢(z,y)) in z is zero. We,
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therefore, have

Uo.r Lo (%0, ¥0)e(zos (Zo,¥0)) = E[Uox Lo (20, ¥%0)e(zos (20, v0)))
+ [ BlUoz Lo cs(eos (0,30))Dos 1G.ID33 (ids, + %;B)

t z,4(z, :
+ [ BlUor Loz (s (o) 2222 E N G, 1y ap

T ~ - 3
+ [ ElWor L elzos (20, w0)|G. W dB]
1]

oL .~ .
=L (2,9)e(z0; (70, 0))|G. ) (Xidw§ + %;dBj)

oL,

T -
+ [ Blar L7 (@, )z (20,0))|Gu1Y; B

T
+ / E[UO'T L
0

T
+/o E[U,J'Lo,rc(zo,t (zo,yo))IG.hdef- (4.7)

Taking the product of (4.7) with f: u;(8)dw}, because w and B are independent under

P x ﬁ, we have
T .
E[Uor Lo c(z0s) /0 ui(s)dw;]

m t
= E[Uor Lo cz(zo¢) Do, /0 Dg; Xi(s)ui(s)ds]

i=1
m T
oL
+ 3 BlUor Le(zos) | 25 (2,3) Xile)do) (4.8)
i=1
From (3.9) Lag;:_r = ag;: Dyt - %L;o:—L, . (z,y)Dg, . Substituting in (4.8) the result

follows.

NOTATION 4.2. Write * for the transpose. Furthermore write Ror = [ (Dy2 X;(s))* duf,

~ (T ;10 - c(P-11s - .

:E:':: Aor = .-; Js Lo} —al%'—Do 3 Xi(s) X;(s)* (Do, ) ds and recall the Malliavin matrix, [1],
:E:E:k [4], (which here is a ‘partial’ Malliavin matrix in the X; vector fields):

:n".‘ m T

,;_; Moz =% /o D;! X:(s) X:(s)" (D51 )* ds.

z‘:' =1

e '
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COROLLARY 4.3. We then have the special case of Theorem 4.1 obtained by taking

ui(s) = (Do Xi(s))* :

E{Uor Loz ¢(zot ) Rox | = E[Uor LoT €2 (170.: )Dos Mo ]

+ E[Uor Loz Lot ¢(o; )

Mo,'.r ]. (4.9)

— E[Uox Lo ¢(zos )Aor |

COROLLARY 4.4. Equation (4.9) is still true for vector, (or matrix), functions c.

REMARKS 4.5 The gradient ¢, of ¢ occurs in only one term, so (4.9) is an
‘integration by parts’ formula. Suppose g is a second smooth function with bounded

derivatives of all orders. Applying (4.9) to the product ¢(zos)g(zos) we have

E[Uor Lo, ¢(zo)9(zo ) Ror |
= E[Uor Lox (c=(%os )9(zos) + c(to,t )9z (%o, )) Dot Moy |

+ E[Uor Loz Lot (%o )9(zos )

MO.T ]

— E{Uor Lox c(zos)9(z0s )Aor |- (4.10)
From Lemma 3.4 the random variables Uy generate Fr so (4.10) can be written

E[Lor c(zo¢)9(z0s ) Ror | Fr]

X = E[Lo;r (cz(zog)9(zos ) + C(-"’O.t )9z (%04 )) Dog Mo | Fr]

4 + E|Lox Lot ¢(zo¢ )9(zos ) Mo,T |Fr]

— E[Lo ¢(zo, )9(zos ) Aor IFTI-
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Under Pxﬁ, Yrcfr 80

E|Lor c(zos )9(zos ) Ror |YT)
= E[Lox (cz(zos)9(zos ) + ¢(Zo,¢ )9z (z0¢)) Dos Mos |YT]
Lo
dxo

+ E|Lor Lot c(zos )g(zoy ) Mor Y]

— E[Lox ¢(zos )g(zos Ao [Y7]-

Now Eh[c(z0)9(zos)Rox [Yr] = E{Loz c(z04)9(z0¢)Rox [¥rl(E{Loz Yr])™ . Further-

more, Lo > 0 a.s.; therefore
E[Lor|Y:]™ < oo as.
Consequently, dividing by E[Lor |Yr] we have

Ele(zos )9(zos ) Ror |Yr]
= Ep[(cz(zot)9(zos) + ¢(zos )92 (20 )) Dog Mo |Yr]

+ E|Lor ¢(zos)9(zos)

OLor
Y Mo |Yr]

— En[c(zos )g(zos )Aor | YT, (4.11)

where both sides are finite a.s.

With this in mind, to obtain a bound for the conditional expectation Ej[cz(zos)|YT]
we would like to take g = Mg Dg} in (4.11). However, Do and My involve the past
of the process £o¢, Dos and Mps. This difficulty can be circumvented by considering

an enlarged system.

18
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NOTATION 4.6. Let ¢ (w,3,s,t,z,y, L,U) denote the flow associated with the sys-

tem (4.2). Write DS&) for the Jacobian associated with this flow. Note that among

the components of DS?,) are the ‘partial’ Jacobian 924 :,y = D,: and the gradient
OLa; :’y . Write

RY =Ry = / ‘(D.-,.I.Xi(“))'dwi

A =4, —E / L a""‘ D Xi(u) Xi(u)* (D7y)* du

l—l

c((;)= a,t-— /D Xi(u)X.'(u)'(D;:)‘du.

=1
Then the system

60 = (4@, DO RO p) A©))

is Markov with coefficients in
Sd+p+2,d+p+2+(d+p+2)?,2d+p+2+ (d+p+2)%,2d+p+2+2(d+p+2)%,1).

The results of Theorem 2.5 apply to this system and its flow ¢{1). Note that M,; is
the predictable quadratic variation of the tensor product of R,s with itself. Write X?)
for the coefficient vector fields of the w* integrals in ¢(1), and DS},) for the Jacobian of

é) . Also write

t
B = / (Dt X (u))dus

and M, (1) for the predictable quadratic variation of the tensor product of R() with

SO,) which we shall denote by

M) = (Y @ RY)).
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n Then define ¢() = (¢(), D) R A1) g0 ¢(*) is a Markov process for which the
stochastic flow results of Theorem 2.5 hold. Proceeding in this way we inductively

o define X'(") for the coefficient vector fields of the w' integrals in PAQ) .
‘ »
B = [ (062 X w)at,

Y M,(::) = (R(..) ® R© Yot

and ¢(rtl) = (¢(") ,D) R(®) M (")'). Write v, for the gradient operator in the com-

ponents of ¢(") .

: THEOREM 4.7. Suppose ¢ is a bounded C® scalar function on R® with bounded
;:: derivatives. Let g be a possibly vector, (or matrix), valued function on the state space
; of ¢ such that g(¢(™ (0,t)) and Vn.g(¢™ (0,t)) are both in some LP(1). Then

5

. Exle(z0r)o(6™ (0,4)) @ R{} ¥r]

)

’ = En[ez(z0¢)9(6™ (0,£)) Dog Mo [¥7)

'-. + Ex[e(zos ) Vag(8™ (o, t))D(()',‘t) Mé"? |Y7]

+ En[Lgh e(o0:)o(6® (0,0) 222 Moz v

? ~ Enle(zo4)o(¢™ (0,)borr Y]

¢

‘. PROOF. The result follows by applying to the system ¢(*) the techniques used to derive
(4.11).
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REMARKS 4.8. Th 2.5 1 Dyl |, sup|M,y,’ |, su su are
corem 2.5 implies aup D, sup M7 |, sup |21, sup o

in LP( x ﬁ,P x ﬁ) for all 1 < p < oo and, therfore, finite a.s. . We have already
noted that

supID{,‘_}] and supLa,}

<t <t

are in every L?(Q} x ﬁ,P X ﬁ), 1 < p < o0o. To write out the above result in terms of
Doy, %’—3‘5 and higher derivatives involves very involved calcuations. Even in the one

dimensional case it seems better to introduce the sequence of flows ¢(*). Theorem 4.7

can again be thought of as giving a conditional ‘integration by parts’ formula for ¢;.

COROLLARY 4.9. If Mg} is in some LP(f x ﬁ,P;.) taking (¢t (0,2)) = Mg} D5t in

Theorem 4.7 we have
Enlcz(zos)|Yr] = Enle(zot )Mo} D5} ® Ror |Yr]
— Enle(z04)(719)(Dog , Moz ) DS} MEY (¥r]

_ 1 oy 9o
— Ep[e(zoy )Lo,%' Mo,t1 Do,tl 3 z;T

Mor |Yt]

+ Exe(zo¢)Mo7 Dot Ao Y1)

Because the remaining terms are integrable and, therefore, finite a.s. we have proved

the following result:

THEOREM 4.10. Suppose P, is the probability measure of Definition 3.8 and (zot,yos)
is the solution under Py of (3.10). Let ¢ be a smooth function with bounded derivatives

of all orders. Then if Mj. } is in some LP(Q x f, P)

|Efes(zog)|¥T]| < K(y) sup |e()] (4.12)
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where K(y) is Yr-measurable and finite a.s.

REMARKS 4.11. Condition (4.12) implies that the random variable zot (zo,¥0) has a
conditional density given Yr, d(z), z € R? for almost ail y. (See Malliavin [6] or Zakai
[9]). Now for any s < T

Y, c Yr.

so by Jensen’s inequality, from (4.12)

|Elcz(z0,4)|Ya]| < K'(v) Sup le(=)]- (4.13)

Equation (4.13) holds for s < t or s > t so the prediction, filtering and smoothing
problems for the random variable zq¢ (zo,y0) all have a density for almost all y.

The remaining question concerns the existence and integrability properties of
Mgt . These have been carefully studied, see Bismut [1], Malliavin [6] and Stroock
[8]. For (z,y) € R% x RP write T:y for the vector subspace of R% generated by the
vector fields X (z,y),...,Xm(z,y), and the Lie brackets of Xi(z,y),...,Xm(z,y) and
X (=, y),...,)?,.(z, y), where each bracket contains at least one of the vector fields
Xi(z,y),..., Xm(z,y). Then in Theorem 1.19 of [2] Bismut and Michel show that for

all T >0, Mg} is in LP(Q x 0, P,) for all 1 < p < oo if the following condition H of

Hormander is satisfied:

H : Ty, is equal to the whole of R?.

As Bismut [1] observes, if H is satisfied at (zo,yo) then it is satisfied in some neigh-

bourhood of (zo,y0). Condition H is a local statement and translates immediately to

diffusions defined on manifolds.
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Finally recall that if u is a non-singular linear map of R? to itself, then the map
¢ :u — u~! has a derivative ¢'(u) which is a linear map on the space of linear maps of
R? to itself given by ¢'(u)-h = —~u~'-h-u™l. Applying this to g(Dos, Mo,;) = Mg} Dy}

we have

En[ez(zo)|Yr] = En[e(zo)M57 Dof ® Ror |Yr]
— Eale(zoe )M (V1 Moy ) (DY) M) M5} D5} vr]
— Ele(z04)Mg} D5} (V1 Do, ) (D) MED) DG} )
a;'zoo’T Mo |Y]
+ Exle(zos )M} Dgp Ao |Yr). (4.14)

— Exle(zos) Lot Mys D5y
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5. BOUNDS FOR HIGHER DERIVATIVES
To show the conditional density of zo, is differentiable, in the prediction, filtering

and smoothing situations, we shall obtain bounds for higher derivatives of the form:
1B 5 (zoeI¥r]1 < K(s) sup [l 5.1

where 0 <t < T. Here a = (a1y...,24) is a multi-index of non-negative integers and

8  9m 9m g
8z% ~ 9z 9z T 9zge

Again if 0 < 8 < T then Jensen’s inequality applied to (5.1) gives

1B [525 (00)IY] < K'@) sup [e(o). (5.2

A well known argument from harmonic analysis, (see [7], or [8]), shows that if (5.2) is
true for all a with {a| = oy + ag4---4+ a4 < n where n > d41 then the random variable
Zot (Zo,¥0) has a conditional density d(z) given Y,, which is in C*%~! (R%). That is,
we have a differentiable conditional density in the prediction, filtering and smoothing
situations.

To see how to proceed apply Corollary 4.9 to ¢, in place of ¢. (If preferred,
Corollary 4.9 could be applied to just one partial derivative 3%‘:: in place of ¢. However,

the result is true for vector functions ¢). This gives:

Enlczz (zos)|YT] = En[ez(zos ) M54 Do} ® Ror |Yr]
~ En[es(z04)(V19)(Dog , Mog ) DS MY vz ]

—1 20—1 1 9Lo
~ E[es(zo4) Lot Mo¢ D} a_,;T

+ Ep[cz(zot)M54 Dy Ao |Y7). (5.3)

Mo |Y7T]
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‘ ‘ Consider the four terms on the right of (5.3). Each term is of the form
B
B Elez(zo2)hi(8™ (0,8),¢M (0, T)) Y], i =1,2,3,4.
i
o
::: For each such h; consider a function
A
o hi = hiMg} D}
‘:.
oy
M ~
X and apply Theorem 4.7 to ¢ and h; to obtain
[\
A hi(() M (0. TLIY:
o Enlez(zos )hi(¢% (0,¢),4 (0, T))|Yr]
ki
t = Enle(zos)hi(6® (0,), 6" (0,T)) ® RS} |¥r]
A
— Enfe(z0s)(Va(®)Ri) (6 (0,1), 61 (0, T)) DF) MY |¥r]
& - T)h) (¢ ™ (0,T)) DY M} |Y;
) En[e(zo,)(Va(T) ki) (6" (0,¢),4' (0,T)) Dy ot [Y7]
' 1 (20 )is(@) W (o, 1)) 2 Lo
. - Eh[LO,Tc(xO.t)hl(¢ (0,¢),4 (0,T)) azo Mor |Yr)
+ Enle(zoe)hi(¢) (0,), 6% (0,T)) Ao ¥ .
‘: ' Substituting in (5.3) we obtain an expression on the right which involves only ¢ and
o not its derivatives. This procedure can be repeated, using Theorem 4.7. At each stage,
v to replace a term of the form Ej[c, (Io'g)h(¢(n) (o, t),¢(") (0,T))|YT] by one involving
E. only ¢ define h = hMg} D5i and applying Theorem 4.7. Clearly higher powers of My}
K
K
. are introduced at each iteration. However, Hormander’s condition H is sufficient to
W ~
::f ensure that Mg L is in every LP(f1 x 1, P,), 1 < p < co. We have, therefore, proved the
Q:’
::f following result:
0
i.'
"’
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o THEOREM 5.1. Suppose Hormander’s condition H is satisfied. Then the random vari-
’ able zot (z0,¥0), the solution of the signal process, has a conditional density given Y,
o for almost all y which is in C®(R®) for s > t and s <t. That is, under condition H

N the prediction, filtering and smoothing problems have a smooth density solution.

< Iy ) ¥ "
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